Blauer Mond – farbverstärkt

Blauer Mond mit farbverstärkter Oberfläche.

Bildcredit und Bildrechte: Robert Fedez

Beschreibung: Der Mond leuchtet normalerweise in zarten Grau- oder Goldtönen. Für diese vielfarbige Teleskop-Mondlandschaft zur vollen Mondphase wurden kleine, aber messbare Farbunterschiede kräftig verstärkt. Man geht davon aus, dass die verschiedenen Farben den tatsächlichen Unterschieden der chemischen Zusammensetzung der Mondoberfläche entsprechen. Blaue Farbtöne zeigen titanreiche Regionen, während orange und violette Farbtöne relativ titan- und eisenarme Regionen sind.

Das vertraute Meer der Ruhe oder Mare Tranquillitatis ist die blaue Region rechts oben. Vom 85 Kilometer großen Strahlenkrater Tycho rechts unten verlaufen weiße Linien strahlenförmig über die orange gefärbten südlichen lunaren Hochländer.

Der Vollmond zu Beginn des Monats wird als jahreszeitlicher Blauer Mond gezählt, weil er ungewöhnlicherweise der dritte von vier Vollmonden war, die während des nördlichen Sommers (und somit des südlichen Winters) auftraten. Dieses Komposit aus 272 Bildern zeigt, dass der Vollmond immer blau ist, aber nicht sosehr, dass er beeindruckt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Ein Feuerregenbogen über West Virginia

Feuerregenbogen oder Zirkumhorizontalbogen über dem North Fork Mountain in West Virginia.

Bildcredit: Christa Harbig

Beschreibung: Was ist mit dieser Wolke los? Eiskristalle in einer fernen Federwolke verhalten sich wie kleine schwebende Prismen. Parallel zum Horizont verläuft ein Zirkumhorizontalbogen.

Wegen ihrer flammenartigen Erscheinung werden Zirkumhorizontalbögen inoffiziell als Feuerregenbogen bezeichnet. Damit ein Zirkumhorizontalbogen zu sehen ist, muss die Sonne mindestens 58 Grad hoch am Himmel stehen und darunter Zirruswolken vorhanden sein – in diesem Fall vom Typ Cirrus fibratus.

Die vielen flachen, sechseckigen Eiskristalle, aus denen die Federwolke besteht, müssen waagrecht ausgerichtet sein, um Sonnenlicht möglichst gleichförmig – also auf eine kollektiv ähnliche Art und Weise – zu brechen. Daher sind Zirkumhorizontalbögen eher selten zu sehen.

Dieser Feuerregenbogen wurde zu Beginn dieses Monats in der Nähe von North Fork Mountain in West Virginia (USA) fotografiert.

Zur Originalseite

Bahnen möglicherweise gefährlicher Asteroiden

Diese Karte zeigt potenziell gefährliche Asteroiden in Erdnähe.

Bildcredit: NASA, JPL-Caltech

Beschreibung: Sind Asteroiden gefährlich? Einige schon, doch die Wahrscheinlichkeit, dass in einem bestimmten Jahr ein gefährlicher Asteroid die Erde trifft, ist gering. Da jedoch in der Vergangenheit einige Massenaussterben mit Asteroideneinschlägen in Verbindung gebracht werden, setzte sich die Menschheit das Ziel, Asteroiden zu finden und zu katalogisieren, die eines Tages das Leben auf der Erde gefährden könnten.

Hier sind die Bahnen von mehr als 1000 bekannten potenziell gefährlichen Asteroiden (PHAs) abgebildet. Diese registrierten taumelnden Brocken aus Gestein und Eis sind größer als 140 Meter und passieren die Erde in einem Abstand von weniger als 7,5 Millionen Kilometern – das ist etwa die 20-fache Entfernung zum Mond. Zwar wird keiner davon in den nächsten 100 Jahren die Erde treffen, doch viele Bahnen sind in einem Zeitraum von mehr als 100 Jahren schwer abzuschätzen, und außerdem wurden noch nicht alle PHAs entdeckt. Würde ein Asteroid dieser Größe auf der Erde einschlagen, könnte er zum Beispiel gefährliche Tsunamis hervorrufen.

Zur Untersuchung von Strategien zum Schutz der Erde startet noch dieses Jahr der Double Asteroid Redirection Test (DART) der NASA. Natürlich treffen täglich viel kleinere Stücke aus Gestein und Eis auf die Erde, doch diese sind normalerweise nicht gefährlich und erzeugen manchmal unvergessliche Feuerkugeln und Meteorschauspiele.

Zur Originalseite

Der Marsfels Rochette

Dieses Bild von Missions-Sol 180 (22. August) des Marsrovers Perseverance zeigt den Boden des Kraters Jezero mit dem Felsen Rochette.

Bildcredit: NASA, JPL-Caltech

Beschreibung: Dieses scharfe Bild wurde an Missions-Sol 180 (22. August) von einer Gefahrenkamera auf dem Rover Perseverance aufgenommen. Es zeigt den Blick auf den mit Steinen übersäten Boden des Kraters Jezero auf dem Mars. Links unten ist eines der lenkbaren Vorderräder des Rovers mit einem Durchmesser von 52,5 Zentimetern zu sehen. In der Mitte liegt ein großer Felsen mit dem Spitznamen Rochette.

Die Missionsplanerinnen und -planer möchten Rochette nicht auslassen. Stattdessen soll Perseverance mit seinem zwei Meter langen Roboterarm die Felsoberfläche anschleifen, um festzustellen, ob sich seine Konsistenz für eine Probenentnahme mit dem Kerbbohrer des Rovers eignet, mit einer Dicke von etwas mehr als einem Bleistift. Die von Perseverance gesammelten Proben würden von einer künftigen Marsmission zur Erde gebracht.

Zur Originalseite

Elefantenrüssel und Karawane

Der kosmische Elefantenrüssel ist der Sternhaufenkomplex IC 1396 oder auch vdB 142.

Bildcredit und Bildrechte: Robert Eder

Beschreibung: Wie die Illustration einer galaktischen Einfach-so-Geschichte windet sich der Elefantenrüsselnebel im hohen, fernen Sternbild Kepheus durch den Emissionsnebel und den jungen Sternhaufenkomplex IC 1396. Der kosmische Elefantenrüssel links ist auch als vdB 142 bekannt und mehr als 20 Lichtjahre lang.

Durch digitale Bearbeitung sind auf dieser detailreichen Teleskop-Nahansicht keine Sterne zu sehen. Das Bild betont die hellen, zurückgefegten Grate, welche die Taschen aus kühlem interstellarem Staub und Gas umgeben. Doch die dunklen, rankenförmigen Wolken enthalten das Rohmaterial für Sternbildung und verbergen im Inneren Protosterne.

Der relativ blasse Komplex IC 1396 ist fast 3000 Lichtjahre entfernt, er bedeckt eine mehr als 5 Grad große Region am Himmel. Diese sternenlose Darstellung zeigt ein 1 Grad weites Sichtfeld, das entspricht etwa der Winkelgröße von 2 Vollmonden. Die dunklen Formen rechts unten, die zum gewundenen Elefantenrüssel marschieren, kennen manche als „Karawane“.

Zur Originalseite

Vollmond zur blauen Stunde

Blauer Vollmondaufgang über den italienischen Alpen von Cortina d’Ampezzo in Italien.

Bildcredit und Bildrechte: Giorgia Hofer

Beschreibung: Naturfotografinnen und -fotografen und Freundinnen des Planeten Erde freuen sich immer auf die Blaue Stunde. Das ist der Übergang in die Dämmerung kurz vor Sonnenaufgang oder nach Sonnenuntergang, wenn die Sonne unter dem Horizont steht, aber Land und Himmel noch von einem schönen blauen Licht durchflutet sind.

Das Foto entstand am 21. August nach Sonnenuntergang in der Blauen Stunde, es zeigt den fast vollen Mond, als er gegenüber der Sonne über den zerklüfteten italienischen Alpen von Cortina d’Ampezzo in Italien aufging. Die felsige Pyramide von Monte Antelao, auch bekannt als der König der Dolomiten, ist ein markanter Alpengipfel der Region, er teilt die bläulichen Farbtöne mit dem Himmel.

Das Mondlicht ist gelb, doch dieser Vollmond wird von einigen als ein jahreszeitlicher Blauer Mond bezeichnet, weil der dritte Vollmond in einer Jahreszeit mit vier Vollmonden per definitionem als Blauer Mond bezeichnet wird. Wenn man eine Jahreszeit als die Zeit zwischen Sonnenwende und Äquinoktium definiert, geht der vierte Vollmond dieser Jahreszeit kurz vor dem Äquinoktium im Septembers in der Blauen Stunde des 20. September auf.

Zur Originalseite

Ballwurf im Sonnensystem


Videocredit und -rechte: James O’Donoghue (JAXA) und Rami Mandow (Space Australia); Text: James O’Donoghue

Beschreibung: Wo fällt ein Ball schneller: auf der Erde, auf Jupiter oder Uranus? Diese Animation zeigt einen Ball, der aus einer Höhe von einem Kilometer auf die Oberflächen berühmter Körper im Sonnensystem fällt, wobei kein Luftwiderstand angenommen wird.

Die Schwerkraft hängt von der Masse des anziehenden Objekts ab, größere Massen ziehen mit größerer Kraft nach unten. Doch die Schwerkraft hängt auch von der Entfernung zum Schwerpunkt ab, bei kürzerer Entfernung fällt der Ball schneller.

Wenn man Masse und Entfernung kombiniert, überrascht es vielleicht, dass Uranus den Ball ein bisschen langsamer anzieht als die Erde, obwohl er mehr als 14mal soviel Masse hat. Das liegt daran, dass Uranus eine viel geringere Dichte hat, daher sind die Wolkenoberflächen weiter von seinem Schwerpunkt entfernt.

Obwohl der fallende Ball immer schneller wird, würdet ihr diese Beschleunigung nicht spüren, wenn ihr auf dem Ball wärt, weil ihr euch im freien Fall befindet. Das Video zeigt, dass von den drei erwähnten Planeten ein Ball auf Jupiter sogar noch schneller fällt als auf der Erde oder Uranus.

Zur Originalseite

PDS 70: Scheibe, Planeten und Monde

Innerhalb der Staubscheibe um den Stern PDS 70 befindet sich der Planet PDS 70c mit einer Staubscheibe, in der vermutlich Monde entstehen.

Bildcredit: ALMA (ESO/NAOJ/NRAO); M. Benisty et al.

Beschreibung: Es ist nicht die große Scheibe, welche die Aufmerksamkeit auf sich zieht, obwohl die große Planeten bildende Scheibe um den Stern PDS 70 klar abgebildet und für sich genommen sehr interessant ist.

Es ist auch nicht der Planet rechts innerhalb der großen Scheibe, über den am meisten gesprochen wird, obwohl der Planet PDS 70c neu entstanden ist und interessanterweise eine ähnliche Größe und Masse besitzt wie Jupiter.

Es ist vielmehr der verschwommene Fleck um den Planeten PDS 70c, der die Aufregung hervorruft. Dieser verschwommene Fleck ist vermutlich ebenfalls eine staubhaltige Scheibe, aus der nun Monde entstehen. So etwas wurde noch nie zuvor beobachtet.

Das Bild wurde mit dem Atacama Large Millimeter Array (ALMA) in der hoch gelegenen Atacamawüste im Norden Chiles fotografiert, das aus 66 Radioteleskopen besteht. Aus den ALMA-Daten schließen die Astronominnen und Astronomen, dass der Radius der exoplanetaren Scheibe, aus der Monde entstehen, ähnlich groß ist wie der unserer Erdbahn, und dass eines Tages ungefähr drei erdmondgroße Monde entstehen könnten, die sich nicht wesentlich von den vier unseres Jupiters unterscheiden.

Zur Originalseite